Performance analysis of a discrete-time Geo/G/1 queue with single working vacation

نویسندگان

  • Shan Gao
  • Zaiming Liu
چکیده

This paper treats a discrete-time batch arrival queue with single working vacation. The main purpose of this paper is to present a performance analysis of this system by using the supplementary variable technique. For this purpose, we first analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. Next, we present the stationary distributions of the system length as well as some performance measures at random epochs by using the supplementary variable method. Thirdly, still based on the supplementary variable method we give the probability generating function (PGF) of the number of customers at the beginning of a busy period and give a stochastic decomposition formulae for the PGF of the stationary system length at the departure epochs. Additionally, we investigate the relation between our discretetime system and its continuous counterpart. Finally, some numerical examples show the influence of the parameters on some crucial performance characteristics of the system. Keywords—Discrete-time queue; Batch arrival; Working vacation; Supplementary variable technique; Stochastic decomposition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Time Analysis of Multi-Server Queueing System with Multiple Working Vacations and Reneging of Customers‎

This paper analyzes a discrete-time $Geo/Geo/c$ queueing system with multiple working vacations and reneging in which customers arrive according to a geometric process. As soon as the system gets empty, the servers go to a working vacations all together. The service times during regular busy period, working vacation period and vacation times are assumed to be geometrically distributed. Customer...

متن کامل

ANALYSIS OF A DISCRETE-TIME IMPATIENT CUSTOMER QUEUE WITH BERNOULLI-SCHEDULE VACATION INTERRUPTION

This paper investigates a discrete-time impatient customer queue with Bernoulli-schedule vacation interruption. The  vacation times and the service times during regular busy period and during working vacation period are assumed to follow geometric distribution. We obtain the steady-state probabilities at arbitrary and outside observer's observation epochs using recursive technique. Cost analysi...

متن کامل

Discrete - Time / / 1 Retrial Queue with General Retrial Times , Working Vacations and Vacation Interruption

Abstract: We consider a discrete-time 1 X Geo G retrial queue with general retrial times, and introduce working vacations and vacation interruption policy into the retrial queue. Firstly, we analyze the stationary condition for the embedded Markov chain at the departure epochs. Secondly, using supplementary variable method, we obtain the stationary probability distribution and some performance ...

متن کامل

Analysis of a Single Server Queue with Working Vacation and Vacation Interruption

In this paper, an M/M/1 queue with working vacation and vacation interruption is investigated. The server is supposed to take a working vacation whenever the system becomes empty and if there are at least N customers waiting in the system at a service completion instant, vacation interruption happens and the server resumes a normal working period. A matrix geometric approach is employed to obta...

متن کامل

On a discrete-time GI/Geo/1/N queue with single working vacation and partial batch rejection

This paper treats a discrete-time finite buffer batch arrival queue with a single working vacation and partial batch rejection in which the inter-arrival and service times are, respectively, arbitrary and geometrically distributed. The queue is analyzed by using the supplementary variable and the imbedded Markov-chain techniques. We obtain steady-state system length distributions at prearrival,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012